ATTRIBUTES OF GROWTH AND STEADY STATE SETTLEMENTS

Ivan M. Johnstone BSc(Physics), BArch(Hons), PhD

https://www.insearchofsteadystate.org

The following table is an update of the table in my 1979 publication 'Ekistics and energetics: A sustainable future planning approach'. *Urban Ecology 4,* 227-233. PDF

Attribute	Growth Society	Steady State Society
Economic Philosophy		1
Primary Concept	Scarcity	Scarcity
Attitude to Scarcity	Conflict	Acceptance
Purpose of Production	Consumption	Maintenance
Emphasis on Production	Productivity	Distribution
Timescale Horizon	Narrow	Wide
Incentive for Work	Income for consumption	Satisfaction
Typical Attitude to Work	Necessary imposition	Accepted part of life
Work and Leisure	Differentiated	Little difference
Place of Humankind in Ecosystem	Domination	Participatory
Population		1
Typical Annual Growth Rate of	2.0 %	Ideally average 0%
Natural Population		
Doubling Time	36 Years	No doubling time with zero net
		immigration
Age Composition Profile	Triangular	Cylindrical
Total Fertility	Global peak of 5.10 in 1964	Approx. 2.11
	declining to 2.44 in 2016	
Time to Re-stabilise	70 years	Already stable
Net Reproduction Rate	Global peak of 1.892	1 000
	(1965-1970) declining to	
	1.099 (2015-2020)	
	Dependent on death rate	
Family Structure	Nuclear family	Extended family
Urbanisation	High (80%)	Lower (20-40 %?)

Capital Stock		
Durability	Low	High
Maintenance Energy Cost	High	Low
Recycling	Limited	Optimised within inevitable dissipation
		and energy constraints
Creation of New Capital Stock	A large proportion of new	New capital stock is replacement
	capital stock is additional	capital stock. Materials of old capital
	capital stock using	stock are recycled within above
	additional materials	constraints
Energy Production		
Source	Energy stock	Energy flow
Limits of Production	Peaking (maximum rate of	Level of technology and availability of
	extraction) and inevitable	key scarce minerals invested in viable
	EROI decline to 1.0	renewable energy sources
Permanence of Source	Non-renewable	Renewable over medium time scale,
		but ultimately long-term technological
		decline as minerals dissipate
Level of Pollution	High Pollution	Low Pollution
Pattern of Energy Flow	Increasing then decline	Slow decline due to inevitable slow
		dissipation of materials and limits of
		recycling unless less abrupt fall
		precipitated by economic shock
Consumption		-
Pattern per Capita	Increasing per capita	Constant per capita with minor
		fluctuations
Goods and Services Consumption	Unnecessary consumption	Necessary consumption
Tertiary Sector	Large tertiary sector	Small tertiary sector – self sufficiency
Distribution of Consumption	Unequal distribution	Equal distribution
Wastage	High wastage	Low wastage

Industrial Production		
Pollution	Heavy pollution	Light or no pollution
Energy Consumption	High energy consumption	Low energy consumption
Technological Accidents	Frequent and serious	Infrequent and insignificant
Type of Processes	Complicated	Comprehensible and ideally locally
		supported
Impact on other Life Forms	Widespread destruction of	Participatory dependence on other life
	other life forms	forms as an integral part of a healthy
		ecosystem and associated energy flow
Risk of Processes	Ecologically dangerous	Ecologically adapted
Organisation of Production		
Concentration of Production	Centralised	Decentralised within communities
Interdependency of Production	High interdependence, long	More self-sufficiency, shorter supply
	supply chains	chains
Size of Productions Units	Large production units	Smaller production units
Specialisation of Production	High specialisation,	Low specialisation, emphasis on
	emphasis on mass	artisanship
	production	
Use of Science & Technology	Science and technology	Science and technology practised by
	practised by specialist elite	all using more appropriate, benign
	with high risk of unintended	technology
	consequences	
Use of Capital, Energy, and Labour	Capital and energy	More labour intensive
	intensive	

Food Production		
Type of Agricultural System	Monoculture and uniformity	Permaculture and diversification
Participation in food production	Industrialised production by	Production of food involves every
	large farm units	family
Factors of production	Energy and capital	More labour-intensive
	intensive	
Use of Fertilisers	Artificial fertilisers	Natural fertilisers
Use of animals	Animals used primarily as	Animals perhaps used again for
	food source	mechanical energy value
Impact on soil	Erosion and depletion	Replenishment
EROEI	Low < 1.0	High > 10
Control of pests	Dangerous pesticides used	Ecological techniques used
Environmental Protection	Largely treated as a "nice	Environmental integrity and ecosystem
	to have" and source and	services become increasingly
	sink, often as an	important as the support for the
	"externality" to the market	economy and as material resources
		contract